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Summary. The use of a massively parallel computer for simulations of condensed 
matter systems at Bristol University is reviewed, with a discussion of the factors 
influencing the choice of algorithms. Emphasis is placed on the importance of 
adopting simple, easily-modifiable algorithms, based where possible on geometri- 
cal domain decomposition. Several examples of scientific applications are given. 
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1. Introduction 

1.1. Parallel computers and scientific research 

This is a short review of work carried out in theoretical physics at Bristol 
University, using the Distributed Array Processor (DAP). The condensed matter 
theory group is interested in the statistical mechanics of inhomogenous systems 
and phase transitions, including liquid/vapour wetting phenomena, magnetic 
multilayers, high-T~, superconductors, liquid crystals, and surface-adsorbed 
molecules. 

The DAP was provided by the Science and Engineering Research Council 
(SERC) under its Computational Science Initiative, the main aim of which is to 
place computing equipment in individual research laboratories, to support 
scientific research for which local computer power is essential. This complements 
SERC's provision of central supercomputer time, and the general computing 
infrastructure available at most U.K. universities and research establishments. 
The DAP is a fine-grained, massively-parallel, single-instruction-multiple-data 
(SIMD) machine. 

In a recent review of the scientific achievements of the Computational Science 
Initiative [ 1], it is clear that many elements of the U.K. scientific community have 
a strong commitment to the development of methods for parallel computer 
architectures. In the short term, it is obviously easier to generate scientific results 
on conventional scalar and vector mini-supercomputers, but in the long term the 
investment of effort in parallel algorithm development may be crucial. 
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In this paper, I shall emphasize that the characteristics of the DAP have 
allowed us to use simple algorithms for the simulation of atomic and spin models 
in statistical mechanics; many of these algorithms are well known on scalar and 
vector machines. Simplicity is important when, as in our case, programs are 
continually being developed and modified in response to fresh scientific challenges. 
It is also important to us that new students, research assistants and visitors are 
able to learn quickly how to program the machine to work efficiently and without 
errors. 

The layout of the paper is as follows. In the rest of this section I shall give 
a short summary of the simulation techniques of interest, and a description of the 
DAP. Then, I shall describe a variety of methods used to simulate both lattice-spin 
and atomic systems, mostly based on the approach of geometrical parallelism 
(domain decomposition). Some references to the scientific work carried out in our 
group will be given. Finally, I shall draw some general conclusions regarding the 
applicability of fine-grained SIMD machines in this field. 

1.2. Simulation methods 

Classical condensed-matter systems may be modelled in a variety of ways. These 
may be split into categories roughly as follows, in increasing order of realism: 
discrete or continuous spins on a lattice, examples being the well-known Ising and 
Heisenberg models; hard particles such as hard spheroids and spherocylinders, 
free to translate and rotate; soft particles, such as the Lennard-Jones and 
Gay-Berne [2] potentials; and finally 'realistic' interatomic potential models, 
possibly with internal flexibility and distributed charges to represent the electron 
density. 

To date, most of our DAP work has concentrated on spin systems (for which 
the architecture is ideal) and on simple atomic systems, representative of the last 
two categories above. While some hard-particle simulations may be vectorized and 
parallelized quite efficiently, most of our work in this area [3] has not been carried 
out on the DAP. This is because the interesting system sizes are still relatively 
small, so highly parallel architectures are disfavoured. As the interest shifts to 
larger systems, this situation will change. Here I shall concentrate on spin and 
atomic systems, in a regime where large system sizes are essential, so the 'scaling' 
problem (i.e. small system but large computer) does not arise. 

The traditional simulation methods are Monte Carlo and molecular dynamics, 
although hybrids are possible as we see elsewhere in these proceedings [4]. Monte 
Carlo involves the selection of random attempted moves, which are then accepted 
or rejected according to some stochastic prescription, to generate states sampled 
from a desired statistical ensemble. This may be applied to any of the systems 
mentioned above. The essential requirement is that it is possible to evaluate 
interaction energies, usually between pairs of atoms or spins, efficiently. (Here we 
restrict our interest to pairwise interactions.) Molecular dynamics is essentially the 
step-by-step solution of the deterministic evolution equations. It may be applied 
to all the above systems except for discrete-state spins (although even here the 
simulation of cellular automata is in the same spirit). The requirement is that, at 
each time step, it is possible to evaluate pair energies and forces efficiently. 

As will be seen below, the common situation is that interactions are of short 
range compared with the overall size of the system (but see Sect. 4.3). We seek 
a way of avoiding the consideration of out-of-range interactions. The ideal 



Simulation of condensed phases using the Distributed Array Processor 401 

solution to this problem on a parallel computer is to map this geometrical 
situation directly onto the structure of  the machine. Good local connectivity on 
a topologically three-dimensional grid will allow efficient evaluation of short 
range interactions in a physically three-dimensional system. The interaction 
range will dictate the distance over which data must be transferred. A further 
requirement is that the number of particles must be comparable with, or exceed, 
the number of processors: then each processor can be responsible for a single 
particle or a region of space containing a group of particles. Otherwise the 
scaling problem appears, and an efficient way must be found of  distributing the 
interactions within a given region of space amongst several processors. The 
simpler, large-system, situation applies in our case. 

2. DAP architecture and programs 

2.1. Structure 

The DAP is a massive fine-grained parallel computer, with the processors 
arranged in a 32 x 32 two-dimensional array (a 64 x 64 version is also available). 
Each processor has its own store, there are fast nearest-neighbour connections, 
and row and column data highways for broadcasting and fetching operations. 
The processors are bitwise rather than floating point chips, and the machine has 
a floating-point performance of the order of 10 Mflops; however operations on 
short integers, and especially logical variables, are very fast indeed. An 8-bit 
coprocessor array is now available, boosting the floating point performance to 
~60  75 Mflops; one might reasonably expect to achieve 40 Mflops on real 
applications. All the work described here was performed on the original machine 
without the coprocessors. 

2.2. Language 

The DAP is programmed in a parallel extension of  Fortran. ParalM data objects, 
two-dimensional matrices and one-dimensional vectors, are defined and manipu- 
lated by single high-level instructions. Originally these variables were constrained 
to have dimension 32, but this restriction is relaxed in the latest version of the 
language. Nonetheless, two array indices are mapped, in general, onto the two 
dimensions of the processor array; the simplest parallel constructs involve an 
implied double DO loop over these indices, much as one can imagine an implied 
single DO loop on a vector machine. Logical objects are used as masks, to screen 
out the results of parallel operations, like 'bit vectors' on some vector machines. 

Global summations, one- and two-dimensional shifts with or without cyclic 
boundary conditions, and broadcast operations, are all provided as efficient 
intrinsic functions. 

3. Algorithms for lattice systems 

Since the DAP architecture is a regular grid, it is well suited to simulation of 
systems having a permanent lattice structure. Here I describe various applica- 
tions and techniques studied in Bristol. 
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Fig. 1. Multispin coding. We show the original (upper) and 
transformed (lower) lattice, using a black/white checkerboard 
labelling. With nearest-neighbour interactions each snblattice 
may be updated in parallel, holding the other one fixed. The 
nearest neighbours (1 4) of a typical black spin (circled) are 
shown. Here and throughout we illustrate the methods using 
a two-dimensional 4 x 4-processor machine as an example 

3. I. Multi-spin coding 

The term 'multi-spin coding' refers to the encapsulation of several logical 
variables or bits into a single word of storage, which is then processed in one 
pass by hardware designed to execute integer and floating-point operations 
efficiently. This is an early example of SIMD parallel processing on a single 
processor. It has been with us for at least 20 years [5] and is well explained in the 
standard references [6]. It is implemented in a natural way on the DAP, as the 
simple illustration in Fig. 1 shows. A standard checkerboard black/white sublat- 
tice structure is imposed on a square lattice having spins at each site. A parallel 
data transform is applied to segregate the black and white spins. Provided that 
interactions are restricted to nearest neighbours, it is permissible to update all the 
black spins at once, simultaneously and independently, by the usual Monte Carlo 
rules. Typical neighbours of  a given spin are shown in the figure. Then the same 
procedure is applied to the white spins. The configuration can be kept in its 
transformed representation for almost the whole simulation; the reverse trans- 
form need only be applied occasionally, for example when a picture of the 
configuration is required. 

In common with many other groups, we have applied this approach to 
simulations on a variety of lattices, in both two and three dimensions. Some 
examples follow. 

3. I.I. Wetting phenomena. A fluid in a pore or capillary [7] may be modelled as 
a lattice gas (a logical variable at each site denoting the presence or absence of 
fluid) within attractive walls. Nearest-neighbour coupling terms, and a longer- 
ranged wall-fluid potential, represent the essential physics. The wall acts to shift 
the first-order liquid-vapour transition, turning it into a capillary condensation 
line. The bulk critical point is shifted, and becomes a capillary critical point. In 
addition, a transition occurs at the surface, between a thin and a thick film of 
adsorbed fluid. These 'prewetting' transitions are first order, and extend from the 
bulk phase transition line (where the two lines meet at the 'wetting' temperature) 
to terminate at a prewetting critical point. In an extensive series of simulations 
on the DAP [8] the prewetting line and the prewetting critical point for this 
model have been located. In addition, it has been shown that the prewetting 
critical point has two-dimensional Ising-like exponents. In other words, despite 
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the fact that the adsorbed film is truly a three-dimensional entity, correlation lengths 
can only diverge in the two directions parallel to the wall, so, sufficiently close to 
the critical point, the critical fluctuations have two-dimensional character. This 
result was widely anticipated, but had never before been demonstrated explicitly. 

3.1.2. Adsorbed molecular monolayers. When gases are adsorbed on a solid 
surface, for example N2 on graphite, they can form molecular monolayers. The 
orientational ordering in such a system is of interest: for example N 2 forms a 
striped herringbone arrangement. A simple model, based on a triangular lattice 
with 3-state Potts-like spins, with nearest-neighbour coupling constants depen- 
dent on the direction of the site-site vector, has been devised to model this system 
[9]. Monte Carlo simulations, covering a large range of the phase diagram 
including the herringbone, ferromagnetic, and disordered phases, have been 
carried out on the DAP [10]. Comparison with theoretical predictions of the 
phase boundaries revealed that the ferromagnetic ~ disordered phase transition 
is quite well understood, but the herringbone ~ disordered phase transition is not 
adequately described. Fluctuations seem to destabilize the herringbone phase to 
a much greater extent than is predicted by theory. 

3.1.3. Alloys. Similar methods have been applied to the simulation of magnetic 
and compositional order in nickel-rich NicFel c alloys [11] using a model with 
Ising-like magnetic and compositional freedom at each site. First a homogeneous 
alloy was investigated, and a fit to experimental data gave estimates of the 
Ni-Ni, Ni-Fe  and Fe-Fe magnetic exchange interaction strengths, the latter 
turning out to be antiferromagnetic. The experimental behaviour of the system 
was adequately reproduced by the model, and several interesting discrepancies 
between mean field theory and simulation were noted. Then the same model was 
used to investigate a modulated alloy in which thin layers (between three and 
fifteen atomic layers thick) of iron and nickel are alternated to form a superlat- 
rice. Such systems may have considerable technological importance and our 
interest in them is prompted by experimental work being carried out at Bristol. 

3.1.4. Liquid crystalfilms. The power of the DAP has enabled us to investigate 
the properties of thin films of liquid crystals, using a simple continuous-spin 
lattice model [12], in unprecedented detail. The shift in the transition tempera- 
ture due to finite film width, and the orientational adsorption profiles, have been 
determined and compared with theory [13]. Simulations of this same model in 
bulk, with and without periodic external fields, have been used to determine 
accurately, for the first time, the Frank elasticconstant, K [ 14]. We have shown 
that the reduced Frank constant C = K/P~ (P2 being the nematic order parame- 
ter) increases with increasing temperature, contrary to mean-field predictions. We 
also simulated directly the Freedericksz transition for this system, applying 
competing bulk and surface fields, showing that an elastic theory of the effect is 
qualitatively correct, but that the nature of the transition makes it an inaccurate 
method of determining K in a simulation. Currently we are investigating a 
version of the model with applied surface fields, which is predicted to exhibit a 
number of bulk and surface orientational transitions with variation of coupling 
strength and/or temperature. The computational effort necessary to determine 
the entire phase diagram by conventional methods is prohibitive. We are 
employing energy histogram methods and long runs ( ~> 10 6 attempted moves per 
particle) with system sizes up to 2 x 104 spins; this would be impossible without 
a dedicated machine. 
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Fig. 2. Cluster updating on the DAP. In the 
'ants-in-a-labyrinth' method, a population of 'ants' (filled 
circles), grown initially from a single site, extends its frontier 
until the entire cluster (open circles) is filled. Trial expansion 
steps, all conducted in parallel, are shown as arrows; each 
one landing on a new cluster site, generates a new 'ant', 
ready for the next step 

3.2. Cluster updating 

Because of the persistence of long-wavelength fluctuations near a critical point, 
there is a need to make large-scale moves in order to sample configuration space 
efficiently. The cluster-updating approach [15, 16] proceeds as follows. Contigu- 
ous clusters of identical spins are identified, and a nearest neighbour bond 
network is established using a stochastic prescription for the creation of bonds. 
This defines a set of subclusters. An attempt is made to flip all the spins in each 
sub-cluster simultaneously. A percolation theory treatment shows that, at the 
critical point, each sub-cluster can be treated independently. Away from the 
critical point, effective cluster-cluster interactions are introduced. 

Such an algorithm can be efficiently implemented on the DAP, because 
efficient parallel algorithms exist to identify clusters: for example, the so-called 
'ants-in-a-labyrinth' method [17, 18] illustrated in Fig. 2. Also, cluster-cluster 
interactions may be efficiently computed using single shift operations. This 
method has been tested on the DAP for the lattice-gas adsorption system 
discussed in the previous section. 

3.3. Molecular dynamics and hybrid Monte Carlo 

Molecular dynamics of a lattice spin system is easily implemented on the DAP, 
since it is a parallel step-by-step advancement of the configuration in accordance 
with the coupled differential equations obtained from the laws of motion. 
Similarly, the combination of molecular dynamics and Monte Carlo known as 
'hybrid Monte Carlo' [19] is equally suitable for the DAP. This technique is 
described in more detail by Heerman [4], but briefly each step consists of 
carrying out a short molecular dynamics run, followed by a global acceptance or 
rejection. The method has been applied to a fully frustrated XY-model, relevant 
to models of high-To superconductivity [20]. 

3.4. Mass-tensor dynamics 

Another way of accelerating simulations is to adopt the molecular dynamics 
approach and attempt to choose the particle masses, or moments of inertia, so 
as to equalize the timescales of all the fundamental modes of the system. In this 
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way the problem of dealing with slow global evolution while having to use a 
short timestep to cope with the fast modes, is avoided. A general approach of 
this kind [21] is to write Hamilton's equations in the form: 

1 3¢t°( {qi, Pi }) = ~ ~, p i (M-1) i jP j  -[- ~K'({qi }) 
ij 

0i = Z (M-1)ijpj 
J 

where the qi are coordinates and the pi are conjugate momenta. Now the mass 
has become a 'mass tensor' M, coupling different degrees of freedom together. 
However, this complicated form of the kinetic energy does not affect the 
ensemble averages of configurational properties, just the dynamics. This ap- 
proach has been used occasionally since its invention [22], but only for a few 
systems is the best choice of M obvious. The method has been implemented on 
the DAP for a model of a fluid membrane [23] in which lattice variables q~ 
represent the height of the surface, and the potential part of the hamiltonian is 
a discretization of the bending energy ~ = ~jq~V~jqj, where V~j = (V2) 2 (172 is 
the lattice Laplacian). For this system it can be shown that M~i = Vii is a good 
choice. Indeed, in its simplest form, this model is exactly soluble, and (with this 
choice of M), all the oscillations have equal frequencies. The real interest is in 
simulating the membrane in a confining potential, for which an exact solution is 
not available. 

This method is quite suitable for the DAP involving solution of a large 
system of coupled linear equations, but for maximum efficiency in the general 
case a sparse matrix solver would be best (both V and M are sparse). Such a 
routine is not yet available on the DAP, to our knowledge. For the model 
described above, a fast solution on the DAP is possible via Fourier transforma- 
tion [23]. 

4. Algorithms for atomic systems 

In the following sections we consider molecular dynamics algorithms for a 
variety of physical situations, as implemented on the DAP. Several general 
reviews of molecular dynamics algorithms on parallel machines are available 
elsewhere [24-26]. 

4.1. Atomic crystals - short-range forces 

For atomic crystals, in which no diffusion occurs, we have essentially a lattice 
problem. The same considerations apply as in the previous section, except that 
interactions are usually not restricted to nearest neighbours, but instead extend 
out to some finite range (typically a few lattice spacings). In the following we 
write out some pseudocode, based on a machine with ideal architecture for the 
problem: a two- or three-dimensional lattice (cubic for simplicity) with fast local 
connectivity. The code can be adapted later to fit the actual machine available 
(for example by replacing an implied loop over one index by an explicit one). 
Each processor holds the position, velocity and force components for one atom. 
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Fig. 3. The positions in rxj are obtained by 
shifting those in rxi by the prescribed amount dx, 
dy, dz, and implementing cyclic boundary 
conditions. A single parallel subtraction rxi-rxj 
gives all the relative coordinates for use in the 
force routine. We show two representative 
interactions computed this way 

The heart of  the program is the calculation of  the force on each atom. This is 
accomplished by an outer set of  loops: 

loop over dx, dy, dx  

call force (dx, dy, dz) 

end loop. 

The loop terminates when all displacements within the potential cutoff have been 
treated. The region spanned by dx, dy, dz need not be cubic: the range of  the 
loops can be tailored to approximately fit a spherical cutoff. The force routine 
calculates, for each atom in parallel, its interaction with another atom displaced 
by dx, dy, dz lattice spacings in the three coordinate directions (see Fig. 3). 

rxl = rx  

ryz = ry 

rzl = rz 

rxj  = rx(  + dx, + dy, + dz) 

ryj = ry( + dx,  + dy, + dz) 

r z j = r z (  + d x ,  + d y ,  + d z )  

rxi j  = rxi  - rx j  

ryij  = ryi -- ryj  

rzij  = rzi -- rz j  

r~isq = rx~/ ** 2 + ry~i ** 2 + rz~i ** 2 

pairs  = rijsq i t .  rcutsq 

ui j(pairs)  . . . .  pair potential energy 

f x i j ( p a i r s )  . . . .  \ 

f y i j ( pa i r s )  . . . .  Ipair force vector 

f z i j (pa i r s )  . . . .  / 

f x i  = f x i j  

f y i  = f y i j  

f z i  = fz~i 

f x j  = - f x ~ j (  - d x ,  - d y ,  - d z )  

f y j  = - - f y i j (  - dx,  -- dy, -- dz) 
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f z j  = - f z i j (  - dx, - dy, - dz) 

ui = uij/2 

uj = uij( - dx, - dy, - dz) /2 

fx =ix + fxi + fxj 

f y  = f y  + f y i  + f y j  

f z  = f z  + f z i  + f z j  

u = u + sum(u/) + sum(uj). 

All the variables except for dx, dy, dz, and u are three-dimensional objects, and, 
apart from the final global sum, all the operations are fully parallel. The pairs 
mask is used to filter out those interactions beyond the cutoff. It is simple to 
translate this pseudo-code into a form suitable for the DAP: the main change is 
that one index (let's say iz, spanning the z coordinate) must be introduced and 
looped over explicitly. Cyclic boundary conditions are assumed to be built in to 
the shifting operations: rx( +dx,  +dy,  +dz) is short for a cyclically shifted array. 
If it is necessary to use 'end-off' shifts rather than cyclic ones, then duplicate 
layers of atomic positions must be used around the basic simulation box, to 
mimic the effects of periodic boundaries (see [25, 26]). 

4.2. Atomic fluids - short-range forces 

For fluids, the simplest approach is to map the problem onto a regular lattice 
and then proceed as in the previous section. Since fluids are disordered, the 
mapping will be imperfect in some way; since atoms in a fluid diffuse, the 
mapping will have to be performed afresh or updated at intervals. 

This approach has been around for many years [27] and is known as the 
'link-cell' method; on a scalar machine a list is used to point to the labels of  
atoms within each lattice cell. On an ideal parallel machine of three-dimensional 
topology, subsidiary lists are not needed. There are two main variants of the 
method. In one [28], each cell may be defined to hold exactly one particle and 
particles are assigned to cells by sorting on their coordinates. In the other 
[25-27], each cell is mapped to a volume of space and each particle within this 
volume is assigned to the cell. In general a cell will be capable of holding several 
particles, but a variant of the method employs a fine mesh such that the 
corresponding volumes are able to hold at most one particle. 

4.2.1. Monotonic grid method. In the method due to Boris [28] a grid is set up 
such that, as one traverses the storage array in each coordinate direction, the 
appropriate coordinate changes monotonically: 

rx(ix, iy, iz) <~ rx(ix + 1, iy, iz) 

ry(ix, iy, iz) <~ ry(ix, iy + 1, iz) 

rz(ix, iy, iz) <~ rz(ix, iy, iz + 1). 

The idea is that the arrangement in store (illustrated in Fig. 4) roughly, but not 
precisely, corresponds to the spatial arrangement of atoms. Evaluation of 
interactions involves shifts out to some cutoff, with a safety margin to allow for 
this imprecision. The main loop and the force routine are exactly the same as in 
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Fig. 4. The monotonic logical grid used in the 
Boris method 

the previous section. Initially the assignment to cells is performed by a global 
sort on a key formed in some way from the x, y and z coordinates. The updating 
of the assignment is performed at regular intervals, and involves comparisons 
and swaps of neighbouring coordinates in an iterative, but efficient way. Exam- 
ple pseudo-code might be as follows: 

• . .  permute y planes 1 ( - ) 2  3 ( - ) 4 . . .  

swap = (ry - ry(O, + 1, 0)) .gt. 0 

swap = swap .and. odd 

swap = swap .or. swap(O, - 1, O) 

rx(swap) = merge(rx(0, + 1, 0), rx(O, - 1, 0), odd) 

ry(swap) = merge(ry(0, + 11 0), ry(O, - 1 ,  0), odd) 

rz(swap) = merge(rz(0, + 1, 0), rz(0, - 1, 0), odd) 

. . .  permute y planes 2 ( - ) 3  4 ( - ) 5 . . .  

swap = (ry - ry(O, + 1, 0)) .gt. 0 

swap = swap .and. even 

swap = swap .or. swap(O, + 1, O) 

rx(swap) = merge(rx(0, + 1, 0), rx(O, - 1, 0), even) 

ry(swap) = merge(ry(0, + 1, 0), ry(O, - 1, 0), even) 

rz(swap) = merge(rz(0, + 1, 0), rz(O, - 1, 0), even) 

Here we are looking at the y coordinates; similar code is applied to the x and z 
directions, and then the whole procedure iterated until no further swaps are 
needed. The variables odd and even are logical masks, containing true values for, 
respectively, odd and even values of the iy index, and false values elsewhere; swap 
identifies adjacent pairs that need swapping. As before, rx(O, + 1, 0) represents a 
matrix cyclically shifted by one position in the y direction. This code has been 
tested on the DAP; it works quite well, although there is a tendency for the grid 
to become highly distorted when large density fluctuations occur. The force 
routine is completely parallelized, but there is some wasted effort in computing 
out-of-range interactions, because of the need for a safety margin in the grid shift 
cutoff. 

4.2.2. Cell method. In the cell method [25-27] each cell contains a (variable) 
number of atoms. The first atom in each cell belongs to 'layer 1', the second to 
'layer 2' etc. (the term 'layer' does not have any geometrical meaning here). 
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These are conveniently stored by adding an extra index to the coordinate arrays: 
rx(ix, iy, iz, il) etc. The assignment is illustrated in Fig. 5. The main loop again 
involves comparing entire matrices of coordinates with shifted copies, and 
looping over the shifts out to a cutoff dictated by the potential. Now there are 
additional loops over the 'layer' indices il and fl  in shifted and unshifted data 
sets. 

loop over il, jl, dx, dy, dx 

call force (il, jl, dx, dy, dz) 

end loop 

The force routine is very similar to that given before, with the addition of the 
indices il, j l  to pick the appropriate layer from coordinates rx(ix, iy, iz, il) etc. 

Again, updating the assignment is efficient, involving local comparisons of 
coordinates and local reassignment of storage locations. The force routine is 
completely parallelized, but there is some wasted effort in examining 'interac- 
tions' involving empty storage locations. In the 'small cell' variant, the layer 
indices are omitted altogether, and the cells contain either one or zero particles; 
the same comments on efficiency apply, and the choice of cell size is partly a 
matter of trial and error. A modification of this algorithm, for molecules 
adsorbed in multilayers on a solid surface, is being developed on the DAP, in 
collaboration with R.M. Lynden-Bell (Cambridge). 

4.3. Atomic fluids - long-range forces 

When all pair interactions must be computed, the advantages of a geometrical 
decomposition disappear, and a simple systolic loop is sufficient. This may be 
employed in the well-known Brode-Ahlrichs fashion [29], originally developed 
for vector machines. One particle is allocated to each processor: for N particles, 
the ½ N ( N -  1) interactions are treated in ½(N-  1) operations each treating N 
interactions in parallel. Between one operation and the next, a cyclic one-dimen- 
sional shift is carried out, as illustrated in Fig. 6. The method works best when 
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Fig. 6. The Brode-Ahlrichs 
algorithm for a 16-processor 
machine, proceeding through 
1, 2, 3 , . . . ,  8 steps. Note the 
duplication in the last step 

N is odd; for N even (as shown in the figure) the last operation computes each 
distinct interaction twice. This must be handled using a logical mask, or by 
dividing the results of this step by two. 

One useful variant for potentials with a cutoff is to sort the coordinates in 
one direction, and cut short the shifting procedure as soon as the interactions 
have moved out of range. This is basically the Boris method again, but applied 
to one dimension only; it has proved useful for systems in which the simulation 
box is much longer in one direction than in the others. 

5. Conclusions 

In this paper, I have tried to review the simplest techniques used to simulate 
condensed phases on the DAP at Bristol. A common feature of these techniques 
is that they are not new: they are often derived from well-known scalar and 
vector algorithms, and indeed our massively parallel, fine-grained, SIMD ma- 
chine has much in common with a vector processor. The most useful techniques 
make good use of geometrical parallelism, and for three-dimensional problems a 
machine with good three-dimensional connectivity would be ideal. However, a 
two-dimensional machine is satisfactory, for a wide range of situations. The 
single feature of this work for which higher connectivity might be useful is that 
occasionally we wish to carry out a global sum (to calculate the total energy, for 
instance); however the DAP provides efficient ways of doing this, and in any case 
the ratio of processor power to communications bandwidth is sufficiently low 
that communications is rarely a limiting factor in our work. 

" To be sure, I have not touched on some of the most tricky problems facing 
computer simulators on parallel architectures. For  very inhomogeneous systems 
(for example, exhibiting two-phase coexistence, self-assembling systems like 
micelles, or rough surfaces) the regular geometrical decompositions described 
above will become quite inefficient. It would be worthwhile to devise a fast 
adaptiv e scheme, allowing variable cell size and shape, and to implement this on 
a parallel computer, to handle such highly inhomogeneous systems. Another 
point is that we have not faced the 'scaling problem' because the systems we wish 
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to study on the DAP are quite large. We must remember that we are in the 
business of choosing the best tools to do the job at hand, not trying to fit the 
task to the machine. For the problems I have described above, the DAP is very 
suitable. We also simulate smaller systems, for quite long periods of time; I have 
not described this work, as it is not so suitable for the DAP. We are fortunate 
that chip technology has advanced sufficiently rapidly that single-processor 
machines and some vector processors are still adequate in many cases for this 
work. Nonetheless, as we become more ambitious, and start to reach the limits 
of single-processor machines in this field, we will have to face this challenge. 
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