
Theor Chim Acta (1993) 84:399-411 Theoretica
Chimica Acta
© Springer-Verlag 1993

Simulation of condensed phases using the Distributed
Array Processor

Michael P. Allen
H. H. Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol, BS8 1TL, UK

Received October 1, 1991/Accepted November 27, 1991

Summary. The use of a massively parallel computer for simulations of condensed
matter systems at Bristol University is reviewed, with a discussion of the factors
influencing the choice of algorithms. Emphasis is placed on the importance of
adopting simple, easily-modifiable algorithms, based where possible on geometri-
cal domain decomposition. Several examples of scientific applications are given.

Key words: Condensed phases - Distributed Array Processor - Parallel comput-
ers

1. Introduction

1.1. Parallel computers and scientific research

This is a short review of work carried out in theoretical physics at Bristol
University, using the Distributed Array Processor (DAP). The condensed matter
theory group is interested in the statistical mechanics of inhomogenous systems
and phase transitions, including liquid/vapour wetting phenomena, magnetic
multilayers, high-T~, superconductors, liquid crystals, and surface-adsorbed
molecules.

The DAP was provided by the Science and Engineering Research Council
(SERC) under its Computational Science Initiative, the main aim of which is to
place computing equipment in individual research laboratories, to support
scientific research for which local computer power is essential. This complements
SERC's provision of central supercomputer time, and the general computing
infrastructure available at most U.K. universities and research establishments.
The DAP is a fine-grained, massively-parallel, single-instruction-multiple-data
(SIMD) machine.

In a recent review of the scientific achievements of the Computational Science
Initiative [1], it is clear that many elements of the U.K. scientific community have
a strong commitment to the development of methods for parallel computer
architectures. In the short term, it is obviously easier to generate scientific results
on conventional scalar and vector mini-supercomputers, but in the long term the
investment of effort in parallel algorithm development may be crucial.

400 M.P. Allen

In this paper, I shall emphasize that the characteristics of the DAP have
allowed us to use simple algorithms for the simulation of atomic and spin models
in statistical mechanics; many of these algorithms are well known on scalar and
vector machines. Simplicity is important when, as in our case, programs are
continually being developed and modified in response to fresh scientific challenges.
It is also important to us that new students, research assistants and visitors are
able to learn quickly how to program the machine to work efficiently and without
errors.

The layout of the paper is as follows. In the rest of this section I shall give
a short summary of the simulation techniques of interest, and a description of the
DAP. Then, I shall describe a variety of methods used to simulate both lattice-spin
and atomic systems, mostly based on the approach of geometrical parallelism
(domain decomposition). Some references to the scientific work carried out in our
group will be given. Finally, I shall draw some general conclusions regarding the
applicability of fine-grained SIMD machines in this field.

1.2. Simulation methods

Classical condensed-matter systems may be modelled in a variety of ways. These
may be split into categories roughly as follows, in increasing order of realism:
discrete or continuous spins on a lattice, examples being the well-known Ising and
Heisenberg models; hard particles such as hard spheroids and spherocylinders,
free to translate and rotate; soft particles, such as the Lennard-Jones and
Gay-Berne [2] potentials; and finally 'realistic' interatomic potential models,
possibly with internal flexibility and distributed charges to represent the electron
density.

To date, most of our DAP work has concentrated on spin systems (for which
the architecture is ideal) and on simple atomic systems, representative of the last
two categories above. While some hard-particle simulations may be vectorized and
parallelized quite efficiently, most of our work in this area [3] has not been carried
out on the DAP. This is because the interesting system sizes are still relatively
small, so highly parallel architectures are disfavoured. As the interest shifts to
larger systems, this situation will change. Here I shall concentrate on spin and
atomic systems, in a regime where large system sizes are essential, so the 'scaling'
problem (i.e. small system but large computer) does not arise.

The traditional simulation methods are Monte Carlo and molecular dynamics,
although hybrids are possible as we see elsewhere in these proceedings [4]. Monte
Carlo involves the selection of random attempted moves, which are then accepted
or rejected according to some stochastic prescription, to generate states sampled
from a desired statistical ensemble. This may be applied to any of the systems
mentioned above. The essential requirement is that it is possible to evaluate
interaction energies, usually between pairs of atoms or spins, efficiently. (Here we
restrict our interest to pairwise interactions.) Molecular dynamics is essentially the
step-by-step solution of the deterministic evolution equations. It may be applied
to all the above systems except for discrete-state spins (although even here the
simulation of cellular automata is in the same spirit). The requirement is that, at
each time step, it is possible to evaluate pair energies and forces efficiently.

As will be seen below, the common situation is that interactions are of short
range compared with the overall size of the system (but see Sect. 4.3). We seek
a way of avoiding the consideration of out-of-range interactions. The ideal

Simulation of condensed phases using the Distributed Array Processor 401

solution to this problem on a parallel computer is to map this geometrical
situation directly onto the structure of the machine. Good local connectivity on
a topologically three-dimensional grid will allow efficient evaluation of short
range interactions in a physically three-dimensional system. The interaction
range will dictate the distance over which data must be transferred. A further
requirement is that the number of particles must be comparable with, or exceed,
the number of processors: then each processor can be responsible for a single
particle or a region of space containing a group of particles. Otherwise the
scaling problem appears, and an efficient way must be found of distributing the
interactions within a given region of space amongst several processors. The
simpler, large-system, situation applies in our case.

2. DAP architecture and programs

2.1. Structure

The DAP is a massive fine-grained parallel computer, with the processors
arranged in a 32 x 32 two-dimensional array (a 64 x 64 version is also available).
Each processor has its own store, there are fast nearest-neighbour connections,
and row and column data highways for broadcasting and fetching operations.
The processors are bitwise rather than floating point chips, and the machine has
a floating-point performance of the order of 10 Mflops; however operations on
short integers, and especially logical variables, are very fast indeed. An 8-bit
coprocessor array is now available, boosting the floating point performance to
~60 75 Mflops; one might reasonably expect to achieve 40 Mflops on real
applications. All the work described here was performed on the original machine
without the coprocessors.

2.2. Language

The DAP is programmed in a parallel extension of Fortran. ParalM data objects,
two-dimensional matrices and one-dimensional vectors, are defined and manipu-
lated by single high-level instructions. Originally these variables were constrained
to have dimension 32, but this restriction is relaxed in the latest version of the
language. Nonetheless, two array indices are mapped, in general, onto the two
dimensions of the processor array; the simplest parallel constructs involve an
implied double DO loop over these indices, much as one can imagine an implied
single DO loop on a vector machine. Logical objects are used as masks, to screen
out the results of parallel operations, like 'bit vectors' on some vector machines.

Global summations, one- and two-dimensional shifts with or without cyclic
boundary conditions, and broadcast operations, are all provided as efficient
intrinsic functions.

3. Algorithms for lattice systems

Since the DAP architecture is a regular grid, it is well suited to simulation of
systems having a permanent lattice structure. Here I describe various applica-
tions and techniques studied in Bristol.

402 M.P. Allen

O I O G • 0 • 0 •
o @ ~ o o o o o

i o o G o o o o o
O O 0 0 0 0 0 0

O O O 0 0 © O 0
O ~ O 0 @ @ O 0
O O O 0 ! O @ O 0
O O O 0 0 0 0 0

Fig. 1. Multispin coding. We show the original (upper) and
transformed (lower) lattice, using a black/white checkerboard
labelling. With nearest-neighbour interactions each snblattice
may be updated in parallel, holding the other one fixed. The
nearest neighbours (1 4) of a typical black spin (circled) are
shown. Here and throughout we illustrate the methods using
a two-dimensional 4 x 4-processor machine as an example

3. I. Multi-spin coding

The term 'multi-spin coding' refers to the encapsulation of several logical
variables or bits into a single word of storage, which is then processed in one
pass by hardware designed to execute integer and floating-point operations
efficiently. This is an early example of SIMD parallel processing on a single
processor. It has been with us for at least 20 years [5] and is well explained in the
standard references [6]. It is implemented in a natural way on the DAP, as the
simple illustration in Fig. 1 shows. A standard checkerboard black/white sublat-
tice structure is imposed on a square lattice having spins at each site. A parallel
data transform is applied to segregate the black and white spins. Provided that
interactions are restricted to nearest neighbours, it is permissible to update all the
black spins at once, simultaneously and independently, by the usual Monte Carlo
rules. Typical neighbours of a given spin are shown in the figure. Then the same
procedure is applied to the white spins. The configuration can be kept in its
transformed representation for almost the whole simulation; the reverse trans-
form need only be applied occasionally, for example when a picture of the
configuration is required.

In common with many other groups, we have applied this approach to
simulations on a variety of lattices, in both two and three dimensions. Some
examples follow.

3. I.I. Wetting phenomena. A fluid in a pore or capillary [7] may be modelled as
a lattice gas (a logical variable at each site denoting the presence or absence of
fluid) within attractive walls. Nearest-neighbour coupling terms, and a longer-
ranged wall-fluid potential, represent the essential physics. The wall acts to shift
the first-order liquid-vapour transition, turning it into a capillary condensation
line. The bulk critical point is shifted, and becomes a capillary critical point. In
addition, a transition occurs at the surface, between a thin and a thick film of
adsorbed fluid. These 'prewetting' transitions are first order, and extend from the
bulk phase transition line (where the two lines meet at the 'wetting' temperature)
to terminate at a prewetting critical point. In an extensive series of simulations
on the DAP [8] the prewetting line and the prewetting critical point for this
model have been located. In addition, it has been shown that the prewetting
critical point has two-dimensional Ising-like exponents. In other words, despite

Simulation of condensed phases using the Distributed Array Processor 403

the fact that the adsorbed film is truly a three-dimensional entity, correlation lengths
can only diverge in the two directions parallel to the wall, so, sufficiently close to
the critical point, the critical fluctuations have two-dimensional character. This
result was widely anticipated, but had never before been demonstrated explicitly.

3.1.2. Adsorbed molecular monolayers. When gases are adsorbed on a solid
surface, for example N2 on graphite, they can form molecular monolayers. The
orientational ordering in such a system is of interest: for example N 2 forms a
striped herringbone arrangement. A simple model, based on a triangular lattice
with 3-state Potts-like spins, with nearest-neighbour coupling constants depen-
dent on the direction of the site-site vector, has been devised to model this system
[9]. Monte Carlo simulations, covering a large range of the phase diagram
including the herringbone, ferromagnetic, and disordered phases, have been
carried out on the DAP [10]. Comparison with theoretical predictions of the
phase boundaries revealed that the ferromagnetic ~ disordered phase transition
is quite well understood, but the herringbone ~ disordered phase transition is not
adequately described. Fluctuations seem to destabilize the herringbone phase to
a much greater extent than is predicted by theory.

3.1.3. Alloys. Similar methods have been applied to the simulation of magnetic
and compositional order in nickel-rich NicFel c alloys [11] using a model with
Ising-like magnetic and compositional freedom at each site. First a homogeneous
alloy was investigated, and a fit to experimental data gave estimates of the
Ni-Ni, Ni-Fe and Fe-Fe magnetic exchange interaction strengths, the latter
turning out to be antiferromagnetic. The experimental behaviour of the system
was adequately reproduced by the model, and several interesting discrepancies
between mean field theory and simulation were noted. Then the same model was
used to investigate a modulated alloy in which thin layers (between three and
fifteen atomic layers thick) of iron and nickel are alternated to form a superlat-
rice. Such systems may have considerable technological importance and our
interest in them is prompted by experimental work being carried out at Bristol.

3.1.4. Liquid crystalfilms. The power of the DAP has enabled us to investigate
the properties of thin films of liquid crystals, using a simple continuous-spin
lattice model [12], in unprecedented detail. The shift in the transition tempera-
ture due to finite film width, and the orientational adsorption profiles, have been
determined and compared with theory [13]. Simulations of this same model in
bulk, with and without periodic external fields, have been used to determine
accurately, for the first time, the Frank elasticconstant, K [14]. We have shown
that the reduced Frank constant C = K/P~ (P2 being the nematic order parame-
ter) increases with increasing temperature, contrary to mean-field predictions. We
also simulated directly the Freedericksz transition for this system, applying
competing bulk and surface fields, showing that an elastic theory of the effect is
qualitatively correct, but that the nature of the transition makes it an inaccurate
method of determining K in a simulation. Currently we are investigating a
version of the model with applied surface fields, which is predicted to exhibit a
number of bulk and surface orientational transitions with variation of coupling
strength and/or temperature. The computational effort necessary to determine
the entire phase diagram by conventional methods is prohibitive. We are
employing energy histogram methods and long runs (~> 10 6 attempted moves per
particle) with system sizes up to 2 x 104 spins; this would be impossible without
a dedicated machine.

404 M.P. Allen

O

0 ~ - t t--@ 0
0 G -ti--- 0
0 ~ ~ - t I--II--4)

0 0 ¢; - l t-g 0 0
C, -41-4) 0
O O

0

Fig. 2. Cluster updating on the DAP. In the
'ants-in-a-labyrinth' method, a population of 'ants' (filled
circles), grown initially from a single site, extends its frontier
until the entire cluster (open circles) is filled. Trial expansion
steps, all conducted in parallel, are shown as arrows; each
one landing on a new cluster site, generates a new 'ant',
ready for the next step

3.2. Cluster updating

Because of the persistence of long-wavelength fluctuations near a critical point,
there is a need to make large-scale moves in order to sample configuration space
efficiently. The cluster-updating approach [15, 16] proceeds as follows. Contigu-
ous clusters of identical spins are identified, and a nearest neighbour bond
network is established using a stochastic prescription for the creation of bonds.
This defines a set of subclusters. An attempt is made to flip all the spins in each
sub-cluster simultaneously. A percolation theory treatment shows that, at the
critical point, each sub-cluster can be treated independently. Away from the
critical point, effective cluster-cluster interactions are introduced.

Such an algorithm can be efficiently implemented on the DAP, because
efficient parallel algorithms exist to identify clusters: for example, the so-called
'ants-in-a-labyrinth' method [17, 18] illustrated in Fig. 2. Also, cluster-cluster
interactions may be efficiently computed using single shift operations. This
method has been tested on the DAP for the lattice-gas adsorption system
discussed in the previous section.

3.3. Molecular dynamics and hybrid Monte Carlo

Molecular dynamics of a lattice spin system is easily implemented on the DAP,
since it is a parallel step-by-step advancement of the configuration in accordance
with the coupled differential equations obtained from the laws of motion.
Similarly, the combination of molecular dynamics and Monte Carlo known as
'hybrid Monte Carlo' [19] is equally suitable for the DAP. This technique is
described in more detail by Heerman [4], but briefly each step consists of
carrying out a short molecular dynamics run, followed by a global acceptance or
rejection. The method has been applied to a fully frustrated XY-model, relevant
to models of high-To superconductivity [20].

3.4. Mass-tensor dynamics

Another way of accelerating simulations is to adopt the molecular dynamics
approach and attempt to choose the particle masses, or moments of inertia, so
as to equalize the timescales of all the fundamental modes of the system. In this

Simulation of condensed phases using the Distributed Array Processor 405

way the problem of dealing with slow global evolution while having to use a
short timestep to cope with the fast modes, is avoided. A general approach of
this kind [21] is to write Hamilton's equations in the form:

1 3¢t°({qi, Pi }) = ~ ~, p i (M-1) i jP j -[- ~K'({qi })
ij

0i = Z (M-1)ijpj
J

where the qi are coordinates and the pi are conjugate momenta. Now the mass
has become a 'mass tensor' M, coupling different degrees of freedom together.
However, this complicated form of the kinetic energy does not affect the
ensemble averages of configurational properties, just the dynamics. This ap-
proach has been used occasionally since its invention [22], but only for a few
systems is the best choice of M obvious. The method has been implemented on
the DAP for a model of a fluid membrane [23] in which lattice variables q~
represent the height of the surface, and the potential part of the hamiltonian is
a discretization of the bending energy ~ = ~jq~V~jqj, where V~j = (V2) 2 (172 is
the lattice Laplacian). For this system it can be shown that M~i = Vii is a good
choice. Indeed, in its simplest form, this model is exactly soluble, and (with this
choice of M), all the oscillations have equal frequencies. The real interest is in
simulating the membrane in a confining potential, for which an exact solution is
not available.

This method is quite suitable for the DAP involving solution of a large
system of coupled linear equations, but for maximum efficiency in the general
case a sparse matrix solver would be best (both V and M are sparse). Such a
routine is not yet available on the DAP, to our knowledge. For the model
described above, a fast solution on the DAP is possible via Fourier transforma-
tion [23].

4. Algorithms for atomic systems

In the following sections we consider molecular dynamics algorithms for a
variety of physical situations, as implemented on the DAP. Several general
reviews of molecular dynamics algorithms on parallel machines are available
elsewhere [24-26].

4.1. Atomic crystals - short-range forces

For atomic crystals, in which no diffusion occurs, we have essentially a lattice
problem. The same considerations apply as in the previous section, except that
interactions are usually not restricted to nearest neighbours, but instead extend
out to some finite range (typically a few lattice spacings). In the following we
write out some pseudocode, based on a machine with ideal architecture for the
problem: a two- or three-dimensional lattice (cubic for simplicity) with fast local
connectivity. The code can be adapted later to fit the actual machine available
(for example by replacing an implied loop over one index by an explicit one).
Each processor holds the position, velocity and force components for one atom.

406 M . P . Allen

l ! o o
"v'v

rxi rxj

Fig. 3. The positions in rxj are obtained by
shifting those in rxi by the prescribed amount dx,
dy, dz, and implementing cyclic boundary
conditions. A single parallel subtraction rxi-rxj
gives all the relative coordinates for use in the
force routine. We show two representative
interactions computed this way

The heart of the program is the calculation of the force on each atom. This is
accomplished by an outer set of loops:

loop over dx, dy, dx

call force (dx, dy, dz)

end loop.

The loop terminates when all displacements within the potential cutoff have been
treated. The region spanned by dx, dy, dz need not be cubic: the range of the
loops can be tailored to approximately fit a spherical cutoff. The force routine
calculates, for each atom in parallel, its interaction with another atom displaced
by dx, dy, dz lattice spacings in the three coordinate directions (see Fig. 3).

rxl = rx

ryz = ry

rzl = rz

rxj = rx(+ dx, + dy, + dz)

ryj = ry(+ dx, + dy, + dz)

r z j = r z (+ d x , + d y , + d z)

rxi j = rxi - rx j

ryij = ryi -- ryj

rzij = rzi -- rz j

r~isq = rx~/ ** 2 + ry~i ** 2 + rz~i ** 2

pairs = rijsq i t . rcutsq

ui j(pairs) pair potential energy

f x i j (p a i r s) \

f y i j (pa i r s) Ipair force vector

f z i j (pa i r s) /

f x i = f x i j

f y i = f y i j

f z i = fz~i

f x j = - f x ~ j (- d x , - d y , - d z)

f y j = - - f y i j (- dx, -- dy, -- dz)

Simulation of condensed phases using the Distributed Array Processor 407

f z j = - f z i j (- dx, - dy, - dz)

ui = uij/2

uj = uij(- dx, - dy, - dz) /2

fx =ix + fxi + fxj

f y = f y + f y i + f y j

f z = f z + f z i + f z j

u = u + sum(u/) + sum(uj).

All the variables except for dx, dy, dz, and u are three-dimensional objects, and,
apart from the final global sum, all the operations are fully parallel. The pairs
mask is used to filter out those interactions beyond the cutoff. It is simple to
translate this pseudo-code into a form suitable for the DAP: the main change is
that one index (let's say iz, spanning the z coordinate) must be introduced and
looped over explicitly. Cyclic boundary conditions are assumed to be built in to
the shifting operations: rx(+dx, +dy, +dz) is short for a cyclically shifted array.
If it is necessary to use 'end-off' shifts rather than cyclic ones, then duplicate
layers of atomic positions must be used around the basic simulation box, to
mimic the effects of periodic boundaries (see [25, 26]).

4.2. Atomic fluids - short-range forces

For fluids, the simplest approach is to map the problem onto a regular lattice
and then proceed as in the previous section. Since fluids are disordered, the
mapping will be imperfect in some way; since atoms in a fluid diffuse, the
mapping will have to be performed afresh or updated at intervals.

This approach has been around for many years [27] and is known as the
'link-cell' method; on a scalar machine a list is used to point to the labels of
atoms within each lattice cell. On an ideal parallel machine of three-dimensional
topology, subsidiary lists are not needed. There are two main variants of the
method. In one [28], each cell may be defined to hold exactly one particle and
particles are assigned to cells by sorting on their coordinates. In the other
[25-27], each cell is mapped to a volume of space and each particle within this
volume is assigned to the cell. In general a cell will be capable of holding several
particles, but a variant of the method employs a fine mesh such that the
corresponding volumes are able to hold at most one particle.

4.2.1. Monotonic grid method. In the method due to Boris [28] a grid is set up
such that, as one traverses the storage array in each coordinate direction, the
appropriate coordinate changes monotonically:

rx(ix, iy, iz) <~ rx(ix + 1, iy, iz)

ry(ix, iy, iz) <~ ry(ix, iy + 1, iz)

rz(ix, iy, iz) <~ rz(ix, iy, iz + 1).

The idea is that the arrangement in store (illustrated in Fig. 4) roughly, but not
precisely, corresponds to the spatial arrangement of atoms. Evaluation of
interactions involves shifts out to some cutoff, with a safety margin to allow for
this imprecision. The main loop and the force routine are exactly the same as in

408

() ()

() ()

() ()

() ()

() ()

()

M. P. Allen

Fig. 4. The monotonic logical grid used in the
Boris method

the previous section. Initially the assignment to cells is performed by a global
sort on a key formed in some way from the x, y and z coordinates. The updating
of the assignment is performed at regular intervals, and involves comparisons
and swaps of neighbouring coordinates in an iterative, but efficient way. Exam-
ple pseudo-code might be as follows:

• . . permute y planes 1 (-) 2 3 (-) 4 . . .

swap = (ry - ry(O, + 1, 0)) .gt. 0

swap = swap .and. odd

swap = swap .or. swap(O, - 1, O)

rx(swap) = merge(rx(0, + 1, 0), rx(O, - 1, 0), odd)

ry(swap) = merge(ry(0, + 11 0), ry(O, - 1 , 0), odd)

rz(swap) = merge(rz(0, + 1, 0), rz(0, - 1, 0), odd)

. . . permute y planes 2 (-) 3 4 (-) 5 . . .

swap = (ry - ry(O, + 1, 0)) .gt. 0

swap = swap .and. even

swap = swap .or. swap(O, + 1, O)

rx(swap) = merge(rx(0, + 1, 0), rx(O, - 1, 0), even)

ry(swap) = merge(ry(0, + 1, 0), ry(O, - 1, 0), even)

rz(swap) = merge(rz(0, + 1, 0), rz(O, - 1, 0), even)

Here we are looking at the y coordinates; similar code is applied to the x and z
directions, and then the whole procedure iterated until no further swaps are
needed. The variables odd and even are logical masks, containing true values for,
respectively, odd and even values of the iy index, and false values elsewhere; swap
identifies adjacent pairs that need swapping. As before, rx(O, + 1, 0) represents a
matrix cyclically shifted by one position in the y direction. This code has been
tested on the DAP; it works quite well, although there is a tendency for the grid
to become highly distorted when large density fluctuations occur. The force
routine is completely parallelized, but there is some wasted effort in computing
out-of-range interactions, because of the need for a safety margin in the grid shift
cutoff.

4.2.2. Cell method. In the cell method [25-27] each cell contains a (variable)
number of atoms. The first atom in each cell belongs to 'layer 1', the second to
'layer 2' etc. (the term 'layer' does not have any geometrical meaning here).

Simulation of condensed phases using the Distributed Array Processor 409

O o @ C °

Layer :/

L)

chO00 0 ,O
D

[,ayer 1 I,ayer 2
Fig. 5. The layer decomposition used in the
Rapaport method

These are conveniently stored by adding an extra index to the coordinate arrays:
rx(ix, iy, iz, il) etc. The assignment is illustrated in Fig. 5. The main loop again
involves comparing entire matrices of coordinates with shifted copies, and
looping over the shifts out to a cutoff dictated by the potential. Now there are
additional loops over the 'layer' indices il and fl in shifted and unshifted data
sets.

loop over il, jl, dx, dy, dx

call force (il, jl, dx, dy, dz)

end loop

The force routine is very similar to that given before, with the addition of the
indices il, j l to pick the appropriate layer from coordinates rx(ix, iy, iz, il) etc.

Again, updating the assignment is efficient, involving local comparisons of
coordinates and local reassignment of storage locations. The force routine is
completely parallelized, but there is some wasted effort in examining 'interac-
tions' involving empty storage locations. In the 'small cell' variant, the layer
indices are omitted altogether, and the cells contain either one or zero particles;
the same comments on efficiency apply, and the choice of cell size is partly a
matter of trial and error. A modification of this algorithm, for molecules
adsorbed in multilayers on a solid surface, is being developed on the DAP, in
collaboration with R.M. Lynden-Bell (Cambridge).

4.3. Atomic fluids - long-range forces

When all pair interactions must be computed, the advantages of a geometrical
decomposition disappear, and a simple systolic loop is sufficient. This may be
employed in the well-known Brode-Ahlrichs fashion [29], originally developed
for vector machines. One particle is allocated to each processor: for N particles,
the ½ N (N - 1) interactions are treated in ½(N- 1) operations each treating N
interactions in parallel. Between one operation and the next, a cyclic one-dimen-
sional shift is carried out, as illustrated in Fig. 6. The method works best when

410 M . P . Allen

1
2 3 4 5 6 7 8 9 10 12 13 14 16] l l r x j

. 14 1 9 3 4 7 8 9
3 4 5 6 9 11 14 15 l ~] r x j

[1 2 3 4 5 6 : 0 : 1 9 1013 : : 12 1316 1: i S ~ r x i
4 5 6 7 8 9 12 15 2 rxj

9 , 1 4 5 7 8 rxj

Fig. 6. The Brode-Ahlrichs
algorithm for a 16-processor
machine, proceeding through
1, 2, 3 , . . . , 8 steps. Note the
duplication in the last step

N is odd; for N even (as shown in the figure) the last operation computes each
distinct interaction twice. This must be handled using a logical mask, or by
dividing the results of this step by two.

One useful variant for potentials with a cutoff is to sort the coordinates in
one direction, and cut short the shifting procedure as soon as the interactions
have moved out of range. This is basically the Boris method again, but applied
to one dimension only; it has proved useful for systems in which the simulation
box is much longer in one direction than in the others.

5. Conclusions

In this paper, I have tried to review the simplest techniques used to simulate
condensed phases on the DAP at Bristol. A common feature of these techniques
is that they are not new: they are often derived from well-known scalar and
vector algorithms, and indeed our massively parallel, fine-grained, SIMD ma-
chine has much in common with a vector processor. The most useful techniques
make good use of geometrical parallelism, and for three-dimensional problems a
machine with good three-dimensional connectivity would be ideal. However, a
two-dimensional machine is satisfactory, for a wide range of situations. The
single feature of this work for which higher connectivity might be useful is that
occasionally we wish to carry out a global sum (to calculate the total energy, for
instance); however the DAP provides efficient ways of doing this, and in any case
the ratio of processor power to communications bandwidth is sufficiently low
that communications is rarely a limiting factor in our work.

" To be sure, I have not touched on some of the most tricky problems facing
computer simulators on parallel architectures. For very inhomogeneous systems
(for example, exhibiting two-phase coexistence, self-assembling systems like
micelles, or rough surfaces) the regular geometrical decompositions described
above will become quite inefficient. It would be worthwhile to devise a fast
adaptiv e scheme, allowing variable cell size and shape, and to implement this on
a parallel computer, to handle such highly inhomogeneous systems. Another
point is that we have not faced the 'scaling problem' because the systems we wish

Simulation of condensed phases using the Distributed Array Processor 411

to study on the DAP are quite large. We must remember that we are in the
business of choosing the best tools to do the job at hand, not trying to fit the
task to the machine. For the problems I have described above, the DAP is very
suitable. We also simulate smaller systems, for quite long periods of time; I have
not described this work, as it is not so suitable for the DAP. We are fortunate
that chip technology has advanced sufficiently rapidly that single-processor
machines and some vector processors are still adequate in many cases for this
work. Nonetheless, as we become more ambitious, and start to reach the limits
of single-processor machines in this field, we will have to face this challenge.

Acknowledgements. Thanks are due to my colleagues at Bristol, Dave Nicolaides, Bob Evans, Balazs
Gyorffy, and many others, for their support and advice, and to David Fincham and Bill Smith
(Daresbury Laboratory) for helpful discussions. The DAP was provided by the Science and
Engineering Research Council.

References

I. Allen MP, Guest MF (1991) Scientific achievements of the computational science initiative.
SERC Report (June 1991)

2. Gay JG, Berne BJ (1981) J Chem Phys 74:3316
3, Allen MP, Frenkel D, Talbot J (1989) Comput Phys Rep 9:301
4. Heerman D (these proceedings)
5. Friedberg R, Cameron JE (1970) J Chem Phys 52:6049
6. Binder K (1986) Monte Carlo methods in statistical physics. Topics in Current Physics 7, 2nd ed;

(1987) Applications of the Monte Carlo method in statistical physics. Topics in Current Physics
36, 2nd ed

7. For an introduction to this subject see Charvolin J, Joanny JF, Zinn-Justin J (eds) (1989)
Liquids at interfaces. Les Houches, Session XLVIII. 1988 Elsevier, Amsterdam

8. Nicolaides DB, Evans R (1989) Phys Rev B 39:9336; ibid (1989) Phys Rev Lett 63:778
9. Sluckin TJ (1988) J Phys A: Math Gen 21:1415

10. Allen MP, Armitstead K (1989) J Phys A: Math Gen 22:3011
ll . Taylor MB, Gyorffy BL, Walden CJ (1991) J Phys Cond Mat 3:1575
12. Allen MP (1989) Molecular Simulation 4:61
13. Telo da Gama MM, Tarazona P, Allen MP, Evans R (1990) Mol Phys 71:801
14. Cleaver DJ, Allen MP (1991) Phys Rev A 43:1918
15. Swendsen RH, Wang JS (1987) Phys Rev Lett 58:86
16. Niedermayer F (1988) Phys Rev Lett 61:2026
17. Dewar R, Harris CK (1987) J Phys A: Math Gen 20:985
18. Allen MP, O'Shea SF (1987) Molecular Simulation 1:47
19. Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987) Phys Lett 195B:216
20. Nicolaides DB (1991) J Phys A24:L231
21. Bennett CH (1975) J Comp Phys 19:267
22. Batrouni G, Katz G, Kronfeld A, Lepage G, Svetitsky B, Wilson K (1985) Phys Rev D, 32:2736
23. Nicolaides DB (private communication)
24. Fincham D (1987) Molecular Simulation 1:1; Fincham D (1990) in: Catlow CRA, Parker SC,

Ailed MP (eds) Computer modelling of fluids polymers and solids. NATO ASI Series 293:269,
Kluwer

25. Rapaport DC (1988) Computer Phys Rep 9:1; Rapaport DC (1990) in: Catlow CRA, Parker SC,
Allen MP (eds) Computer modelling of fluids polymers and solids. NATO ASI Series 293:249,
Kluwer; (1991) Comput Phys Commun 62:198; ibid 62:217

26. Smith W (1991) Comput Phys Commun 62:229
27. Quentrec B, Brot C (1975) J Comput Phys 13:430
28. Boris J (1986) J Comput Phys 66:1
29. Brode S, Ahlrichs R (1986) Comput Phys Commun 42:51

